sábado, 17 de julio de 2010

problemas

ejemplo 1

una particula se desplaza en linea recta S10 en la distancia dirigida de la particula desde el origen en los T segundos. La velocidad V se expresa como pie/seg y esta es la velocidad de la particula a los T segundos y la aceleracion se expresara como
a= pie/seg^2 a los T segundos.
Si en la ecuacion es a=2T-1 V=3 S=4 T=1
Expresar la velocidad y la distancia como funciones del tiempo
dv/dt= 2T-1
dv= (2T-1)(dt)
∫ dv= ∫ (2T-1)dt

v= t 2-t +C1

SUSTITUYENDO VALORES
V=3
T=1
3=12 -1+C1
3=1-1+C1
3=C1
SUSTITUYENDO ESTE VALOR
V=T2 -T+3
Esta ecuacion expresa la velocidad en funcion del tiempo
hacemos v= ds/dt
ds/dt= T2 - T+3
ds =(T2-T + 3)
∫ ds= ∫ (T2-T+3)dt
S = (T3)/3-(T2)/2 +3T +C2

Sustituimos S=4, T=1
Y Obtenemos
4= 1/3 - 1/2 + 3 + C2
despejamos C2
C2=7/6

REEMPLAZAMOS
S=1/3 T3 - 1/2T2 + 3T + 7/6

ejemplo 2

Una particula se desplaza en linea recta de tal manera que la velocidad se expresa como cm/seg aun tiempo de T seg. Entonces la velocidad de la trayectoria se expresa como V= cos 2 πT donde el sentido pisitivo se encuentra a la derecha del origen si se encuentra la particula a 5 cm de la derecha del origen al iniciar su movimiento determinar su posicion 1/3 seg mas tarde

V= cos 2 πT
ds/dt= cos 2 πT
ds= cos 2 πT dt
∫ds = ∫cos 2 πT dt
S=1/2 π ∫cos 2 πT (2π dt)
S= 1/2π sen 2π T + C
S=5 T=0
5=1/2π sen 2π (0) + C1
5=C1
La ecuacion de movimiento queda como:
S= 1/2π sen 2π T + 5


Sea S= S promedio
cuando T = 1/3
Entonces S promedio =1/2π sen 2/3π + 5
=1/2π √3/2 + 5
=5.14

La particula se encuentra a la derecha del origen a 1/3 seg despues de iniciarse el desplazamiento.

ejemplo 3

Una piedra es lanzada verticalmente haca arriba desde el suelo con una velocidad inicial de 128 pies/seg. Si la unica fuerza que se considera es la atribuida a la aceleracion de la gravedad determinar
a)cuanto tardara la piedra en chocar contra el suelo
b)la velocidad con la cual chocara en el suelo
c)a que altura se elevara la piedra en su ascenso.


Consideraciones iniciales
sea T segundos el tiempo que ha transcurrido desde que la piedra fue lanzada
S pies distancia de la piedra desde el suelo a los T segundos
|V| pies/seg magnitud de la velocidad de la piedra a los T segundos
la aceleracion es debida ala gravedad tiene un valor constante -32 pie/ seg
la aceleracion se expresara como dv/dt=-32
entonces:
dv/dt=-32
dv=-32dt
∫ dv=∫ -32dt
∫ dv=-32∫ dt
v=-32T +C1

por lo tanto V= -31 + 128
V= ds/dt
-32t + 128 = ds/dt
ds= (-32+128)dt
s=(-32+128) t + c
s = (-16t^2 +128t + c1)
s=0
t=0
C1=0
s= -16t^2+128t+0
sustituyendo 0=-16t(t-8)
donde t=0
t = 8s ( alapiedra le toma 8s llegar al suelo)

para obetener V

V = -32 + 128
t= 8seg
V = -32(8) + 128
V = -128
lVl= 128

para determinar s
calculamos V = 0
t=4
cuando V=0
S = -16t^2 + 128t
S= -16(4) + 128(4)
s= -256+128= l-128l = 128

No hay comentarios:

Publicar un comentario